Center Lyapunov exponents in partially hyperbolic dynamics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Exponents of Hyperbolic Measures and Hyperbolic Periodic Orbits

Lyapunov exponents of a hyperbolic ergodic measure are approximated by Lyapunov exponents of hyperbolic atomic measures on periodic orbits.

متن کامل

Lyapunov Exponents

The analysis of potentially chaotic behavior in biological and biomedical phenomena has attracted great interest in recent years (1–6). Although no universally accepted mathematical definition of the term chaos exists, Strogatz (7) provides a working definition as ‘‘aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.’’ Aperiodic long-...

متن کامل

Lyapunov Exponents

We are interested in iterates of the logistic map T : [0, 1] → [0, 1] defined by

متن کامل

Stable Ergodicity for Partially Hyperbolic Attractors with Negative Central Exponents

We establish stable ergodicity of diffeomorphisms with partially hyperbolic attractors whose Lyapunov exponents along the central direction are all negative with respect to invariant SRBmeasures.

متن کامل

Symplectic Diffeomorphisms: Partial Hyperbolicity and Zero Center Lyapunov Exponents

It is proven that for a C-generic symplectic diffeomorphism f of any closed manifold, the Oseledets splitting along almost every orbit is either trivial or partially hyperbolic. In addition, if f is not Anosov then all the exponents in the center bundle vanish. This establishes in full a result announced by Mañé in the ICM 1983. The main technical novelty is a probabilistic method for the const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Dynamics

سال: 2015

ISSN: 1930-5311

DOI: 10.3934/jmd.2014.8.549